
Machine Learning for Efficient Image

Filtering at PETRA-III

Thirathep N. Phiankham, Khon Kaen University, Thailand

Supervisor: Vijay Kartik, DESY

September 3, 2024

Abstract

This project explores the use of K-means and DBSCAN clustering al-
gorithms for labeling PETRA-III detector datasets, followed by train-
ing Multi-Layer Perceptron (MLP) models for classification. While
DBSCAN excelled in identifying complex data structures, K-means
was preferred for its ability to define the number of clusters. Two
MLP models with different hidden layer configurations were tested
to evaluate the impact on classification accuracy. The results indi-
cated that neither model achieved the desired accuracy, highlighting
the need for more advanced neural network designs and improved data
preprocessing. This study provides insights for future enhancements
in clustering and classification techniques.

1

Contents

Introduction 3

Theory 5
Introduction to Machine Learning 5
Unsupervised Learning Tool . 7
Supervised Learning Tool . 8

Multilayer Perceptron (MLP) 8

Implementation 12
Clustering . 12
Classification . 12

Activation Function . 13
Criterion . 13
Optimization . 14

Results & Discussion 15
Comparison of K-means and DBSCAN 15
Confusion Matrix . 15
Comparing Visualizations of Average Flux 15

Conclusions 19

2

Introduction

PETRA-III, one of the world’s most advanced synchrotron radiation facil-
ities, plays a crucial role in a wide array of scientific research fields, in-
cluding materials science, chemistry, and biology [1]. The high-resolution
imaging data produced by PETRA-III is essential for researchers to make
accurate and insightful discoveries. However, the quality of this imaging
data is paramount, as any inconsistencies can lead to erroneous interpreta-
tions or require significant post-processing efforts.

One common issue affecting the usability of images at PETRA-III is related
to the improper opening of the shutter at the early stages of data acquisition.
When the shutter does not open wide enough, the beamline cannot receive
the full flux required, resulting in underexposed or otherwise faulty images.
These unusable images, if not filtered out, can compromise the quality of the
data analysis and diminish the overall efficiency of experiments conducted at
the facility.

The primary objective of this project is to develop a machine learning-based
system that can automatically detect and filter out these unusable images,
ensuring that only high-quality data is utilized in subsequent analysis. By
leveraging the power of machine learning, this project aims to enhance the
efficiency of image processing at PETRA-III, reducing the time and effort
required for manual data cleaning and improving the accuracy of experi-
mental results. This report details this machine learning solution’s develop-
ment, implementation, and evaluation, highlighting its potential impact on
the PETRA-III facility’s operations.

3

(a) Examples of unusable images from the PETRA-III dataset

(b) Examples of usable images from the PETRA-III dataset

Figure 1: Sample images from the PETRA-III dataset illustrating which
images were selected for removal and which were retained before analysis.

4

Theory

In this section, we will delve into the background theory of machine learning.
We will mention about machine learning we used in this project. This will
include foundational knowledge of machine learning, key algorithms, and how
they relate to image filtering in the context of PETRA-III.

Introduction to Machine Learning

Machine learning (ML) is a branch of artificial intelligence (AI) that focuses
on developing algorithms and statistical models enabling computers to per-
form tasks without explicit instructions [7]. Instead, these systems learn
from data, identifying patterns, making decisions, and improving their per-
formance over time. This capability to learn and adapt is what differentiates
machine learning from traditional programming, where explicit rules are de-
fined for each task.

Definition and Scope

At its core, machine learning involves the development of models that can
make predictions or decisions based on input data [9]. These models are
built through a process of training, where the algorithm is exposed to large
amounts of data and adjusts its internal parameters to minimize errors in its
predictions. Machine learning is widely applied in various fields, including
computer vision, natural language processing, and predictive analytics, due
to its ability to handle complex and high-dimensional data.

The scope of machine learning is broad, encompassing various subfields and
techniques. These can be categorized primarily into three learning paradigms:

• Supervised Learning: Involves training a model on a labeled dataset,
where the correct output is provided for each input example. The
model learns to map inputs to the desired outputs, enabling it to make
predictions on new, unseen data.

• Unsupervised Learning: Deals with data that lacks explicit labels.
The model attempts to identify underlying structures, such as clusters
or associations, within the data without guidance on the correct output.

5

• Reinforcement Learning: Focuses on training agents to make de-
cisions through interactions with an environment, learning from the
consequences of their actions to maximize some notion of cumulative
reward.

Machine Learning in Image Processing

Machine learning has revolutionized the field of image processing, enabling
the development of sophisticated systems that can automatically analyze
and interpret visual data. Traditionally, image processing relied on manually
crafted algorithms to perform tasks such as edge detection, segmentation,
and object recognition. These techniques, while effective in some scenarios,
often struggle with complex images where variability and noise can obscure
important features.

Machine learning, particularly deep learning, has overcome many of these
limitations by allowing models to learn directly from raw image data. In
image processing, machine learning algorithms can be trained to perform
tasks such as:

• Classification: Assigning an image to a specific category or class based
on its content.

• Detection: Identifying and locating objects or regions of interest
within an image.

• Filtering: Enhancing or modifying an image to remove noise or irrele-
vant data, which is particularly relevant to the project at PETRA-III.

The ability of machine learning models to learn from large datasets and gen-
eralize to new images makes them particularly powerful in settings where
manual processing would be infeasible or too time-consuming. These models
are especially useful in machine-learning environments, such as synchrotron
facilities like PETRA-III, where thousands of images need to be processed
rapidly and accurately.

This theoretical foundation of machine learning provides the basis for de-
veloping advanced image filtering techniques that can automatically identify

6

and discard unusable images, thus enhancing the overall quality of data avail-
able for scientific research at PETRA-III.

In the next section, We will describe the specific machine learning tools
and techniques we utilized in this project, detailing how each was applied
to the task of filtering unusable images at PETRA-III. This includes both
unsupervised learning methods, such as K-means and DBSCAN, as well as
a supervised learning approach using a Multilayer Perceptron (MLP).

Unsupervised Learning Tool

Unsupervised learning algorithms are designed to identify patterns or struc-
tures in data without the need for labeled examples. In the context of this
project, unsupervised methods were employed to explore the inherent struc-
ture of the image data, potentially identifying clusters of unusable images
caused by insufficient shutter opening.

K-means

K-means [8] is a widely used clustering algorithm that partitions data into
K distinct clusters based on their features. The algorithm iteratively assigns
each data point to the cluster with the nearest mean and then recalculates
the cluster centroids until convergence.

The objective of the K-means algorithm is to minimize the within-cluster
sum of squares (WCSS), which is defined as:

J =

j∑
i

∑
x∈Ci

|
√
x− µi|2 (1)

where:

J is the within-cluster sum of squares (WCSS),

K is the number of cluster,

Ci is the set of data points assigned to cluster i,

x represent a data point,

7

µi is the cluster point of the cluster i.

DBSCAN (Density-Based Spatial Clustering of Applications with
Noise)

DBSCAN [3] is a density-based clustering algorithm that identifies clusters
by grouping together points that are densely packed and separating points
that are isolated in low-density regions as outliers. Unlike K-means, DB-
SCAN does not require specifying the number of clusters in advance and can
detect clusters of arbitrary shapes.

DBSCAN has two key parameters:

• Epsilon (ϵ): This parameter defines the maximum distance between
two samples for them to be considered as neighbors. It essentially
sets the radius of the neighborhood around each point. A smaller ϵ
will result in a higher number of smaller clusters, while a larger ϵ may
merge points into larger clusters.

• MinPts: This parameter specifies the minimum number of points re-
quired to form a dense region (or cluster). It helps distinguish between
core points (which have at least MinPts neighbors within ϵ) and border
or noise points. A higher MinPts value generally leads to fewer, larger
clusters and more points being classified as noise.

Supervised Learning Tool

Supervised learning algorithms learn from labeled data to make predictions
on new, unseen data. In this project, a Multilayer Perceptron (MLP) was
used to classify images as usable or unusable based on the training data
provided.

Multilayer Perceptron (MLP)

MLP [5] is a type of feedforward artificial neural network composed of mul-
tiple layers of neurons, including an input layer, one or more hidden layers,
and an output layer. MLPs are capable of modeling complex, non-linear rela-
tionships in the data by learning to map input features to the desired output

8

Start

Input: datasets

Random pickup 1 non-clustered
data point as a new clus-
ter center (core points)

Compute the distance between
the data points in the cluster
with nearby data points (scan)

If distance < ϵ
and number of
data points >
MinPts

Include the scanned data
points into the cluster

A

A

Output: clustered data points

Stop

Yes

No

Figure 2: Flowchart of DBSCAN algorithm

9

Figure 3: Multilayers Perceptron diagram

through backpropagation. Each neuron performs a weighted sum of its in-
puts, adds a bias term, and then applies an activation function to introduce
non-linearity. The output of a neuron y is given by:

y =
n∑

i=1

(wixi) + b (2)

where:

n is the number of the input neurons,

wi is the weight,

xi is the input value,

b is the bias.

In MLP, there are three key components: the input layer, hidden layers, and
output layer:

• Input layer: This layer contains neurons that represent the features
of the input data. The number of neurons equals the dimensionality of
the input.

10

• Hidden layers: These layers are intermediate between the input and
output layers. Each hidden layer transforms the data using weighted
connections and activation functions, enabling the network to learn
complex patterns. The depth (number of hidden layers) and width
(number of neurons per layer) are crucial in determining the network’s
capacity to model intricate relationships in the data.

• Output layer: The final layer produces the predictions.

11

Implementation

Clustering

In this project, we utilized K-means and DBSCAN for data labeling through
clustering. We compared the results from both methods to determine which
best suited our needs. Ultimately, we chose K-means due to its ability to
specify the number of clusters using the K parameter. Although DBSCAN
provided potentially better-fitting clusters, it lacked consistency in deter-
mining the number of clusters across different datasets. Since we needed to
classify our data into exactly two classes, K-means offered the stability and
control we required.

One of the challenges we faced was that the initial label in some clustered
datasets was not always 0. Since our Multi-Layer Perceptron (MLP) model
required the labels to be consistently arranged, we needed a way to address
this issue. To solve this, we implemented a condition that checks the first
label of each dataset. If the first label is 0, the data is left unchanged. How-
ever, if the first label is 1, we swapped all the labels in the dataset to ensure
consistency. The solution was straightforward but effective in maintaining
the required label order for the MLP model.

i f kmeans labe l s [0] == 1 :
kmeans labe l s = 1 − kmeans labe l s

This approach allowed me to correctly swap the labels into the desired order.

Classification

In the classification process, we trained a Multi-Layer Perceptron (MLP)
model using data labeled by either K-means or DBSCAN clustering algo-
rithms. For this project, we specifically used the labels generated by K-means
to train the MLP. To assess the impact of the number of nodes on model ac-
curacy, we trained two different models. The first model consisted of three
hidden layers with 512, 256, and 128 nodes, respectively. In contrast, the
second model had hidden layers with 256, 128, and 64 nodes, respectively.
Below, we provide details on the activation functions, loss criterion, and op-
timization methods used in these models to enhance performance and ensure
accurate classification.

12

Activation Function

• ReLU: Introduces non-linearity by outputting the input directly if
positive, otherwise outputting zero.

f(x) = max(0, x) (3)

• Softmax: Converts logits into a probability distribution, ensuring that
the output values sum to 1 across multiple classes.

σ(z⃗)i =
ezi∑K
j=1 e

zj
(4)

where:

σ is the Softmax,

z⃗ is the input vector,

ezi is the standard exponential function for input vector,

K is the number of classes in the multi-class classifier,

ezj is the standard exponential function for output vector

Criterion

In this project, we used the Cross-Entropy loss [4] function as the crite-
rion for training our classification model. Cross-Entropy loss , also known
as log loss, measures the difference between the predicted probability dis-
tribution and the actual distribution of the target classes. Specifically, it
quantifies how well the predicted probabilities align with the true class la-
bels. The Cross-Entropy loss is particularly well-suited for classification
problems, as it penalizes incorrect predictions more heavily, especially when
the model is confident but wrong. By minimizing this loss during training,
we effectively guide the model to produce probability estimates that are as
close as possible to the true class probabilities, thereby improving its classi-
fication performance.

The Cross-Entropy loss function is defined as:

Cross-Entropy = −
n∑

i=1

yi log (pi) (5)

where:

13

n is the number of classes,

yi is the true probability distribution of class i,

pi is the predicted probability of class i.

Optimization

In this project, we employed the Adam [6] optimization algorithm, an ex-
tension of Stochastic Gradient Descent (SGD) [10], to enhance the training
process of our model. Adam , which stands for Adaptive Moment Esti-
mation , combines the advantages of two other popular optimization tech-
niques: AdaGrad [2] and RMSProp. It maintains a moving average of both
the gradients and their squared values, adjusting the learning rate adaptively
for each parameter. This approach helps to accelerate convergence and im-
prove the efficiency of training, especially in cases where gradients can be
noisy or vary significantly.

In this project, we used the scikit-learn library to manage both the crite-
rion and optimization aspects of our model. scikit-learn is a versatile and
widely-used tool in Python for machine learning. It provides straightforward
and reliable methods for implementing loss functions and optimization algo-
rithms. By integrating scikit-learn into our workflow, we were able to easily
set up and fine-tune these critical components, which helped us streamline
the training process and ensure the accuracy of our model.

14

Results & Discussion

Comparison of K-means and DBSCAN

In Figure 4, we illustrate the key differences between the clustering results
of K-means and DBSCAN. On the left side of the figure, you can see that
both methods produced similar cluster separations. However, the right side
reveals a more nuanced comparison. K-means clustered the data points into
two groups with equal density, which did not align with our expectations. In
contrast, DBSCAN provided a more nuanced clustering result, better cap-
turing the structure of the data. Nonetheless, DBSCAN’s limitation is that
it does not allow us to specify the number of clusters in advance, which is a
significant drawback for our purposes. Given these considerations, we chose
to focus more on K-means for this project, despite its limitations, due to its
ability to define the number of clusters explicitly.

Confusion Matrix

The confusion matrix in Figure 5 highlights some critical insights into the
model’s performance. It shows that the model’s accuracy is insufficient for
real-world applications. The matrix displays the predicted labels (on the
x-axis) versus the true labels (on the y-axis). Notably, predictions for the
label equal to 1 are quite accurate, whereas the model performs poorly for
another label, yielding unreliable results.

The left side of the matrix provides a clearer picture of these issues, suggest-
ing that the higher number of nodes in the MLP model might be contributing
to better performance. In contrast, the right side of the matrix shows signif-
icantly worse predictions compared to the left. A closer examination reveals
that the right side had half as many nodes in the first hidden layer compared
to the left side. This discrepancy suggests that the number of nodes in the
hidden layers may play a crucial role in model performance and could serve
as a basis for future improvements and refinements in our model.

Comparing Visualizations of Average Flux

In Figure 6, we observe the differences in the visualization of average flux for
datasets obtained from the PETRA-III detector. The primary distinction

15

(a) Well-formed clusters gener-
ated by K-means (top) and DB-
SCAN (bottom)

(b) Unexpected clustering results
from K-means (top) and DB-
SCAN (bottom)

Figure 4: Comparison of K-means and DBSCAN Clustering on PETRA-
III Average Flux Data. This figure contrasts the clustering results of K-
means and DBSCAN algorithms applied to average flux measurements from
PETRA-III detector datasets. Yellow points denote the data to retain,
whereas purple points indicate the data to exclude, highlighting the differ-
ences in clustering patterns and effectiveness between the two methods.

(a) Confusion Matrix for a Model with
a 512-Neuron First Hidden Layer

(b) Confusion Matrix for a Model with
a 256-Neuron First Hidden Layer

Figure 5: Confusion matrix of the trained MLP model

16

between the visualizations on the left and right sides lies in the number of
nodes used in the first hidden layer of the MLP model. The model on the
left was trained with 512 nodes in the first hidden layer, whereas the model
on the right was trained with 256 nodes.

These differences in node configuration significantly impact the model’s per-
formance. Although the predictions from the model with 512 nodes on the
left appear closer to the desired outcome, they still fall short of achieving the
level of accuracy required. The model on the right, with 256 nodes, performs
even worse, highlighting the sensitivity of the MLP model to the number of
nodes in its architecture.

The visualizations further underscore the conclusion that neither model suc-
ceeds in meeting the main objective of accurately predicting the average
flux. The disparities between the two models suggest that simply adjusting
the number of nodes is insufficient for resolving the underlying issues. This
insight strengthens our understanding that the current model configurations
are inadequate, prompting the need for further refinement or alternative ap-
proaches to achieve reliable results.

17

(a) Comparison of K-means Clustering and
MLP with a 512-Neuron First Hidden Layer

(b) Comparison of K-means Clustering and
MLP with a 256-Neuron First Hidden Layer

Figure 6: Visualization of MLPModel Predictions for Average Flux in Images
from a single PETRA-III dataset

18

Conclusions

This project set out to explore the effectiveness of using K-means and DB-
SCAN clustering algorithms to label datasets from the PETRA-III detector,
followed by training Multi-Layer Perceptron (MLP) models for classification
purposes. Through the course of this work, several important insights were
gained regarding the strengths and limitations of these approaches.

The initial phase of the project involved clustering the data using K-means
and DBSCAN, with a focus on understanding how each algorithm handled
the unique characteristics of the PETRA-III datasets. DBSCAN proved ef-
fective in identifying clusters of arbitrary shapes and handling noise in the
data, making it a robust choice for complex datasets. However, its inability to
specify the number of clusters beforehand presented a significant limitation,
especially given the project’s requirement to classify data into a predefined
number of classes. K-means, while less flexible in handling irregular cluster
shapes, allowed us to define the number of clusters, which made it a more
practical choice for our classification task.

In the MLP model training part, with the data labeled by K-means, we
trained two different MLP models to evaluate how variations in the number
of nodes in the hidden layers would impact classification accuracy. The first
model, with 512, 256, and 128 nodes in its hidden layers, was designed to
test a more complex architecture, while the second model, with 256, 128,
and 64 nodes, offered a simpler configuration. The results indicated that
while increasing the number of nodes in the hidden layers did improve the
model’s performance to some extent, it was still insufficient to achieve the
level of accuracy required for reliable real-world application. The comparison
between the two models underscored the importance of not just the number
of nodes, but also other factors such as model depth, data preprocessing, and
potential overfitting, which may have influenced the outcomes.

In the performance evaluation part, the confusion matrix provided a detailed
view of the model’s performance across different classes. It revealed that
although the model with more nodes showed a slight improvement, it still
struggled with misclassifications, especially in classes where data was less
representative. This performance gap highlighted the limitations of the cur-
rent MLP configurations and pointed to the need for further refinement. The

19

visualizations of average flux further supported these findings, showing that
neither model configuration was capable of consistently producing accurate
classifications, particularly under varying conditions.

The project concluded that while the approach of using K-means for labeling
and MLP for classification was theoretically sound, in practice, the models
did not meet the desired level of accuracy. The main challenges identified
were the need for a more sophisticated MLP architecture, better handling of
class imbalances, and possibly the exploration of hybrid models that combine
the strengths of both K-means and DBSCAN.

Future work should focus on experimenting with deeper and more complex
neural networks, incorporating additional preprocessing steps, and poten-
tially exploring alternative clustering methods that balance the strengths of
K-means and DBSCAN.

20

References

[1] PETRA III - Deutsches Elektronen-Synchrotron DESY — desy.de.
https://www.desy.de/research/facilities__projects/petra_

iii/index_eng.html. [Accessed 03-09-2024].

[2] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of
Machine Learning Research, 12(61):2121–2159, 2011.

[3] Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In kdd, volume 96, pages 226–231, 1996.

[4] I. J. Good. Rational decisions. Journal of the Royal Statistical Society.
Series B (Methodological), 14(1):107–114, 1952.

[5] Simon Haykin. Neural networks: a comprehensive foundation. Prentice
Hall PTR, 1994.

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2017.

[7] John R. Koza, Forrest H. Bennett, David Andre, and Martin A. Keane.
Automated Design of Both the Topology and Sizing of Analog Electrical
Circuits Using Genetic Programming, pages 151–170. Springer Nether-
lands, Dordrecht, 1996.

[8] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on
Information Theory, 28(2):129–137, 1982.

[9] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT
press, 2012.

[10] Herbert E. Robbins. A stochastic approximation method. Annals of
Mathematical Statistics, 22:400–407, 1951.

21

https://www.desy.de/research/facilities__projects/petra_iii/index_eng.html
https://www.desy.de/research/facilities__projects/petra_iii/index_eng.html

	Introduction
	Theory
	Introduction to Machine Learning
	Unsupervised Learning Tool
	Supervised Learning Tool
	Multilayer Perceptron (MLP)

	Implementation
	Clustering
	Classification
	Activation Function
	Criterion
	Optimization

	Results & Discussion
	Comparison of K-means and DBSCAN
	Confusion Matrix
	Comparing Visualizations of Average Flux

	Conclusions

